### Emerging Vestibular Function Tests

Timothy C. Hain, MD

Five motion sensors – can only measure two saccule is a construction of the sensor of

## There a lot to dizziness beyond the ear

- Inputs ears, eyes, somatosensation, internal models
- Integration CNS
  - Sensory gain and timing
  - Integration of sensory input
  - Cognitive contribution
- Output eyes, posture, spatial orientation

## Technology driving the current advances

- Response triggered averaging (cheap computers)
  - VEMPs (otoliths and central)
    - Limb VEMPs
  - Also (not covered today)
    - Ocular and various other muscle VEMP's
    - · Sound induced vestibular responses (response
    - triggered Tullio's).
    - Etc.

#### Limb VEMP's

- If saccule activation produces an evoked myogenic potential in neck, shouldn't it also produce one in the limbs ?
- Reasons for looking into limb VEMP's
  - Sometimes SCM VEMP's can't be done (neck pain, weak neck).
  - Pathways to the limbs must traverse cervical and lumbar spinal cords – potential for diagnosis of cord lesions

5

<section-header><image>

#### Leg VEMPs

- Using a similar methodology to SCM, we have obtained VEMP's in gastrocnemius.
- Main differences:
  - Longer latency
  - Weaker response (about 1/3 of SCM )
  - Crossed and uncrossed components very different

Rudisill HE. and <u>Hain TC</u> (2008). "Lower extremity myogenic potentials evoked by acoustic stimuli in healthy adults." <u>Otol Neurotol</u> **29**(5): 688-92.



#### Leg VEMP method

Electrodes on Gastroc
Stand on toes to activate muscle
Head forward (not turned to L or R)
500 clicks (more than 128 used for SCM)

8





| Amplitu            | des are<br>compa | smal<br>ared t                   | ller (1<br>0 150                  | oughl<br>))                        | y 50                                |
|--------------------|------------------|----------------------------------|-----------------------------------|------------------------------------|-------------------------------------|
|                    |                  | lpsilateral<br>Wave I<br>(p1-n1) | Ipsilateral<br>Wave II<br>(p2·n2) | Contralateral<br>Wave I<br>(p1+n1) | Contralateral<br>Wave II<br>(p2-n2) |
| Mean               |                  | 45.81                            | 59.52                             | 82.60                              |                                     |
| Std. Error of Mean |                  | 7.21                             | 6.13                              | 16.92                              |                                     |
| Median             |                  | 42.04                            | 54.55                             | 76.68                              |                                     |
| Minimum            |                  | 21.97                            | 25.18                             | 15.87                              |                                     |
| Maximum            |                  | 83.01                            | 123.83                            | 217.31                             | 1                                   |
|                    |                  |                                  |                                   |                                    |                                     |





13

strongly on head position on neck. Not sure what happens with sound responses

# Triceps VEMP method

•Electrodes on Triceps •Activate Triceps •Head forward (not turned to L or R) •500 clicks (more than 128 used for SCM)

14







#### Latency about 35 msec Amplitude about 80-90 uv Both ipsi and contra

|                      | Triceps VEMP ipsilateral to acoustic | Triceps VEMP contralateral to acoustic |
|----------------------|--------------------------------------|----------------------------------------|
|                      | stimulus (SD, 95% CI)                | stimulus (SD, 95% CI)                  |
| P1 latency           | 35.69 ms (7.40, 30.85 - 40.52)       | 36.29 ms (1.82, 35.16 - 37.42)         |
| N1 latency           | 44.29 ms (9.51, 38.08 - 50.50)       | 44.14 ms (3.14, 42.20 - 46.09)         |
| P1-N1 interlatency   | 8.61 ms (2.50, 6.98 - 10.24)         | 7.85 ms (3.34, 5.78 - 9.92)            |
| P1-N1 interamplitude | 82.74 µV (24.54, 66.71 - 98.78)      | 94.54 uV (63.58, 55.13 - 133.95)       |

#### Limb VEMPs -- Overall

- Emerging vestibular test
- Saccule input, limbs output
- Certainly relevant to spinal cord function
- Possibly relevant to cervical vertigo (more coming later)

#### Technology driving advances

- Video Frenzel goggles (tiny cameras on top of eyes)
  - Neck Vibration
  - Cervical vertigo tests
- Other emerging or improved tests (not covered today) Rebound nystagmus (without fixation)
  - Head-shaking nystagmus
  - Hyperventilation induced nystagmus
  - Valsalva Testing (for SCD)

Hain, TC. Head-shaking Nystagmus and New Technology (Editorial). Neurology. 68: 17, 1333-1334 (2007) Ajroud-Driss S. Suffi R, Siddique T, <u>Hain TC</u>, Oculomotor involvement in myotonic dystrophy type 2. Muscle and Nerve Published Online: Sep 10 2008

#### Video Frenzels

- Simple but effective new technology
- Allows one rapidly to elicit nystagmus without fixation
- Examiner can judge whether nystagmus is significant, and easily see torsion – often better than ENG



#### Vibration test

- Method: Apply 60-120 hz vibration to SCM, first one side, then the other. Shower massagers work well for this and are inexpensive.
- Video frenzel goggles optical frenzels don't work very well
- Compare nystagmus before and during



### Vibration Induced Nystagmus

NECK VIBRATION MENIERES DISEASE GENTAMICIN TO R SIDE



#### Vibration Induced Nystagmus

• Unidirectional horizontal nystagmus strongly suggests contralateral vestibular lesion.

Hamann KF, and Schuster EM. Vibration-induced nystagmus - A sign of unilateral vestibular deficit. ORL J Otorhinolaryngol Relat Spec 61: 74-79, 1999.

Dumas G, Perrin P, and Schmerber S. Nystagmus induced by high frequency vibrations of the skull in total unilateral peripheral vestibular lesions. *Acta Otolaryngol* 1-8, 2007b.

#### Mechanisms of VIN

- Direct generation by the neck ("cervical nystagmus"), perhaps through proprioceptors
- Generation from the inner ear itself
- Interaction between the neck and central vestibular processing ("neck fixation").

#### Cervical Vertigo

- Vertigo caused or influenced by NECK movement, rather than inner ear movement
- Classic explanations
  - Vertebral artery compression
  - Neck afferents
  - New Vestibulo-spinal tract impingement in neck ?

#### Classic tests for Cervical Vertigo

• Torsion test -

- Upright move body under still head
  - Assesses COR
- Implausible test and no data that it works
- Supine -dissociate body from head
  - · On bloc vs. head turned on neck
  - Difficult to interpret because combines supine position with neck torsion, and history effects.

## Newer tests for Cervical Vertigo made possible by video-frenzel

- Compare prone to supine positional
- Simply observe for nystagmus with head turned (upright) also called "VAT".





| 0]did |
|-------|
|       |
|       |
|       |
|       |
|       |

## Mechanisms for Cervical Nystagmus ?

- Neck afferents
- Vascular compression of vertebrals
- Spinal cord spino-vestibular pathways in cervical cord



#### Exciting times for Vestibular Testing

- Inexpensive computers allow response triggered averaging of nearly anything
- Inexpensive devices allow highly sensitive recordings of nystagmus
- Nevertheless, we have a long way to go ! The inner ears are just a little piece of the puzzle.